Skip to main content

Dataset


  • Version 1 of 1


Dataset

Title: 
Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012

Related Party - Organisation (Author): Rothamsted Research - North Wyke
Related Party - Organisation (Funder): Defra
Related Party - Organisation (Funder): Scottish Government
Related Party - Organisation (Funder): Welsh Assembly Government
Related Party - Organisation (Funder): DAERA Northern Ireland
Abstract:
An experiment was carried out at Rothamsted Research - North Wyke near Okehampton, south-west England (clay topsoil texture) using small field plots (3 x 6 m) arranged in a randomised block design with three replicates per treatment. Cattle urine (at 5 L/m2), synthetic urine (at 5 L/m2) and cattle dung (at 20 kg/m2) was applied to grassland in mid-May (spring), early-July (summer) and in late-September (autumn) 2012. The synthetic urine was prepared using the formulation described for “R2” in the paper by Kool et al., (2006). A control treatment was included where no urine or dung was applied. In a separate treatment, a commercially available nitrification inhibitor was tested; dicyandiamide (DCD) was pre-mixed with the urine prior to application to give an application rate of 10 kg /ha for the DCD. The urine and dung was collected from lactating dairy cows at Reading University, kept refrigerated at <4°C and applied in less than 2 days after collection. Following urine application to five 0.36 m2 areas of the plot (‘urine patches’), measurements of direct N2O-N were made over c.12 months, using 5 static chambers (1 per 0.36 m2 area, giving a total chamber surface area of 0.8 m2) and analysed by gas chromatography. Dung was applied using a trowel in five patches (60 cm x 60 cm) so that each patch was completely enclosed by a nitrous oxide static chamber. For soil mineral N and grass N uptake measurements, two additional areas of 2 m x 2 m were treated on each plot; one with 20 litres of urine and one with 80 kg of dung. Grass yields and N offtakes were measured following grass cuts in mid-June and late-August 2012 from the spring dung and urine application, early-August 2012 and late-May 2013 from the summer dung and urine application, and late-May 2013 from the autumn dung and urine application. The Devon, 2012 dung and urine experiment contains data sets of; annual nitrous oxide emissions, annual nitrous oxide emission factors, soil moisture, top soil mineral nitrogen (selected dates), temperature, rainfall and associated crop (grass yield and nitrogen offtakes) and soil measurements. Reference: Kool, D.M., Hoffland, E., Abrahamse, P.A and van Groenigen, J.W. (2006). What artificial urine composition is adequate for simulating soil N2O fluxes and mineral N dynamics? Soil Biology and Biochemistry 38, 1757-1763.

Subject Keywords: Nitrous oxideUrineSynthetic urineDungNitrification inhibitorsDCDApplication timingGrassland soilsClay soils
Geographic Keywords: DevonSouth West EnglandEnglandUnited Kingdom
Phenomenon Time -  Start Date/Time: 2012-05-15 00:00:00 End Date/Time:  2013-09-10 00:00:00

Geographic Extent -
    Longitude (West): -4.04
    Longitude (East): -3.75
    Latitude (South): 50.68
    Latitude (North): 50.85

Data Quality Statement:
Rothamsted Research is committed to complying with the standards of the RCUK Policy and Guidelines on Governance of Good Research Conduct, Joint Code of Practice for Research (JCoPR), BBSRC Statement on Safeguarding Good Science Practice, BBSRC data sharing policy and the environmental standard, ISO 14001. Rothamsted Research provides a quality-oriented environment: - Senior management approval of science projects before submission to sponsors. - Scrutiny to ratify the statistical design, management and output for all field, glasshouse and CE experiments. - Institute wide information tools, such as databases of standard operating procedures, risk assessments, COSHH forms, scientific samples, chemical stocks, staff CVs, training and laboratory notebooks. - Laboratory notebook procedures to ensure all operations are recorded, signed and dated, primary data are linked to secondary data, sample location is easily identified and in-house training is recorded. - Electronic data are maintained and backed up on networked servers. Every week a full copy is cycled to a separate physical location. - Environmental targets and objectives are set and environmental performance is monitored in accordance with ISO 14001. - A well-defined training programme for postgraduate students. - Experienced, professional staff provide scientists with support services including experimentation under field, glass and controlled environmental conditions. - High quality academic support services (Computing, Library, Statistics, BioImaging, Analytical Labs, Contracts, Finance and Quality Assurance) - Regular calibration and maintenance of equipment. - Senior management approval of all publications prior to submission and a policy that emphasises submission to peer-reviewed journals. - Facilities are available for Rothamsted to conduct work to support pesticide and semiochemical product approval or authorisation under its ORETO licence number 338, expiry 26 March 2018. Work is conducted to the requirements of this licence if specifically requested by sponsors. Note, Rothamsted Research does not follow GLP and is not accredited as a test facility under the Good Laboratory Practice Regulations, 1999. Project Leaders are responsible for science project work, including that of sub-contractors. Project planning involves risk management of the project. Staff and students on appointment are selected on the basis of how their skills meet the requirements of the project. Training is provided at induction and thereafter identified through annual staff appraisal. Responsibilities of staff involved in the project are formally set out in their written job description and forward job plan. Monitoring and improvement of scientific and environmental standards is achieved through the operation of internal and external procedures: - Monitoring of science output by senior management. - Reviewing progress of projects. - Evaluating reports from internal audits of science projects against the JCoPR, from all Rothamsted activities against the requirements of ISO 14001 and from all external audits. Detailed nitrous oxide emission measurement methodology: Direct N2O emissions were measured with five static flux chambers (40 cm wide x 40 cm long x 25 cm high) per plot, covering a total surface area of 0.8 m2. The chambers were of white (i.e. reflective) PVC and un-vented with an expanded neoprene rubber strip (Portmere rubber, SO14 5QZ) to form an air-tight seal following chamber enclosure with a lid (Cardenas et al., 2010). Chambers were pushed into the soil up to a depth of 5 cm and remained in place throughout the experiment, except during urine/dung application and grass cutting when chambers were removed, locations were marked, and chambers were re-instated to the same position as prior to removal. Chambers remained open except for a short time on each sampling day. On that day, ten samples of ambient air were taken to represent time zero (T0) N2O samples. From each chamber, after a 40-minute enclosure period (T40) a headspace sample was taken using a 50-ml syringe. Using a double needle system the sample was flushed though a pre-evacuated 20-22 ml glass vial fitted with a chloro-butyl rubber septum and held at atmospheric pressure. The N2O flux was calculated using an assumed linear increase in N2O concentration from the ambient N2O concentration (T0) to the N2O concentration inside the chamber after 40-minutes enclosure (T40) (Chadwick et al., 2014). Throughout each experiment, the linearity of emissions through time was checked routinely from three chambers located on the urine only treatment. A minimum of five samples were taken from each chamber at 15 min intervals commencing at closure i.e. T0 and spanning the T40 sampling time. In order to minimise the effect of diurnal variation, gas sampling was carried out between 10:00 am and 14:00 pm and where possible between 10:00 am and 12:00 pm as suggested by IAEA (1992) and referred to in the IPCC good practice guidance (IPCC, 2000). Gas samples were analysed as soon as possible after collection and not stored for more than 2 days (to minimise potential leakage) using gas chromatographs fitted with an electron-capture detector and an automated sample injection system. The gas chromatographs were calibrated on a daily basis using certified N2O standard gas mixtures. An exchange of samples of chamber air and standard gas mixtures between labs from the different research organisations involved in the InveN2Ory programme of experiments who operated the GCs were carried out, to avoid the possibility of any bias in the results towards high or low values. Following urine/dung application, N2O flux measurements were carried out for 5 days immediately following urine/dung application, daily for a further 5 days during the next week, twice weekly for the next two weeks, every other week over the next c.four months, decreasing in frequency to monthly until the end of the 12 month sampling period. Prior to the urine/dung application N2O measurements were taken to provide baseline information. This sampling schedule resulted in an annual total of 33, 32 and 30 sampling days for spring, summer and autumn application respectively, starting from the day of each of the urine/dung application. Measurements were taken over 12 months to follow IPCC good practice guidance and so that the results were directly comparable to the IPCC 2006 methodology default emission factor. Nitrous oxide fluxes from the five replicate chambers per plot were averaged. Cumulative fluxes were calculated using the trapezoidal rule to interpolate fluxes between sampling points. References: Cardenas L.M., Thorman, R., Ashlee, N., Butler, M., Chadwick, D., Chambers, B., Cuttle, S., Donovan, N., Kingston, H., Lane, S., Dhanoa, M.S. and Scholefield, D. (2010). Quantifying annual N2O emission fluxes from grazed grassland under a range of inorganic fertiliser nitrogen inputs. Agriculture, Ecosystems and Environment 136, 218-226. Chadwick, D.R., Cardenas, L., Misselbrook, T.H., Smith, K.A., Rees, R.M., Watson, C.J., Mcgeough, K.L., Williams, J.R., Cloy, J.M., Thorman, R.E. and Dhanoa, M.S. (2014). Optimizing chamber methods for measuring nitrous oxide emissions from plot-based agricultural experiments. European Journal of Soil Science 65, 295-307. IAEA (1992). Manual on Measurement of Methane and Nitrous Oxide Emissions from Agriculture. International Atomic Energy Agency (IAEA), Vienna, IAEA-TECDOC-674, ISSN 10111-4289. (IPCC, 2000). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanul, S., Buendia, L., Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K. znd Tanabe, K. (Eds). IGES, Japan.
Publication Date: 
2017-04-05


To discuss any issues relating to this dataset please either send an email to dis@fba.org.uk or post to our forum

Download All 0.15MB

All Version Downloads

Rights Statement

This data is published under the licence FBA Licence

Attribution: L.M. Cardenas, T.H. Misselbrook and N. Donovan

Citation of this data should be as follows:
L.M. Cardenas, T.H. Misselbrook and N. Donovan (2017): Agricultural Greenhouse Gas Inventory Research Platform - InveN2Ory. Dung and urine experimental site in Devon, 2012. Version:1. [dataset] Freshwater Biological Association [publisher]. doi:10.17865/ghgno562

Total file downloads: 1776

Data ComponentsProjects/Activities